\(\left.$$
\begin{array}{|l|l|}\hline \text { Course Title } & \text { Probability and Statistics } \\
\hline \text { Course Code } & \text { MS-152 } \\
\hline \text { Credit Hours } & 3 \\
\hline \text { Category } & \text { Math \& Science Foundation } \\
\hline \text { Prerequisite } & \text { None } \\
\hline \text { Co-Requisite } & \text { None } \\
\hline \text { Follow-up } & \text { None } \\
\hline & \begin{array}{l}\text { Introduction to Statistics and Data Analysis, Statistical Inference, Samples, } \\
\text { Populations, and the Role of Probability. Sampling Procedures. Discrete and } \\
\text { Continuous Data. Statistical Modeling. Types of Statistical Studies. Probability: } \\
\text { Sample Space, Events, Counting Sample Points, Probability of an Event, Additive } \\
\text { Rules, Conditional Probability, Independence, and the Product Rule, Bayes' Rule. } \\
\text { Random Variables and Probability Distributions. Mathematical Expectation: } \\
\text { Mean of a Random Variable, Variance and Covariance of Random Variables, } \\
\text { Means and Variances of Linear Combinations of Random Variables, Chebyshev's } \\
\text { Theorem. Discrete Probability Distributions. Continuous Probability } \\
\text { Distributions. Fundamental Sampling Distributions and Data Descriptions: } \\
\text { Random Sampling, Sampling Distributions, Sampling Distribution of Means and } \\
\text { the Central Limit Theorem. Sampling Distribution of S2, t-Distribution, F- } \\
\text { Quantile and Probability Plots. Single Sample \& One- and Two-Sample } \\
\text { Estimation Problems. Single Sample \& One- and Two-Sample Tests of }\end{array}
$$ \\
Course \\
Description \\

Hypotheses. The Use of P-Values for Decision Making in Testing Hypotheses\end{array}\right\}\)| (Single Sample \& One- and Two-Sample Tests), Linear Regression and |
| :--- |
| Correlation. Least Squares and the Fitted Model, Multiple Linear Regression and |
| Certain, Nonlinear Regression Models, Linear Regression Model Using Matrices, |
| Properties of the Least Squares Estimators. |

